

MPRAsnakeflow’s documentation

[image: _images/snakemake-%E2%89%A57.7.1-brightgreen.svg]
 [https://snakemake.bitbucket.io][image: _images/mamba-%E2%89%A54.6-brightgreen.svg]
 [https://docs.conda.io/en/latest/miniconda.html]Welcome!

MPRAsnakeflow pipeline processes sequencing data from Massively Parallel Reporter Assays (MPRAs)
to create count tables for candidate sequences tested in the experiment.

MPRAsnakeflow is built on top of Snakemake [https://snakemake.readthedocs.io/]. Insert your code into the respective folders, i.e. scripts, rules, and envs. Define the entry point of the workflow in the Snakefile and the main configuration in a .yaml file.

	Authors
	Max Schubach (@visze [https://github.com/visze])
Computational Genome Biology Group [https://kircherlab.bihealth.org]
Berlin Institute of Health at Charité
Universitätsklinikum Berlin

	Usage
	If you use this workflow in a paper, don’t forget to give credits to the authors by citing the URL of the (original) repository and, if available, it’s DOI. (see above)

	Installation & Getting Started
	Instructions for the Installation of the program and some examples to get you started.

	MPRAsnakeflow Workflows
	An overview of how MPRAsnakeflow works and documentation for the MPRAsnakeflow sub workflows.

	MPRAsnakeflow Examples
	Muliple examples from the literature are listed for every sub workflow in MPRAsnakeflow.

	Project Information
	More information on the project, including the changelog, list of contributing authors, and contribution instructions.

Quick Example

To run MPRAsnakeflow, first activate the snakemake environment with the following command:

conda activate snakemake

And then run the main workflow with:

snakemake --use-conda --cores $N --configfile config/example_config.yaml

Features

	–use-conda:

	This utility uses mamba to efficiently query repositories and query package dependencies.

	–cores:

	This utility sets the number of cores ($N) to be used by MPRAsnakeflow.

	–configfile:

	This file (e.g., config/example_config.yaml) contains the project, its objects and properties, and sub-properties and its objects that must be set before running MPRAsnakeflow.

Investigate results

After successful execution, you can create a self-contained interactive HTML report with all results via:

snakemake --report report.html --configfile conf/config.yaml

This report can be forwarded to your collaborators.
An example of a generated report (using some trivial test data) can be seen here [https://cdn.rawgit.com/snakemake-workflows/rna-seq-kallisto-sleuth/master/.test/report.html].

Feedback

Feel free to leave feedback(s), ask question(s), or report bug(s) at our issues page: MPRAsnakeflow Issues [https://github.com/kircherlab/MPRAsnakeflow/issues].

Indices and tables

	Index

	Search Page

Getting started

	Create an experiment.csv in the format below, including the header.
DNA_F or RNA_F is name of the gzipped fastq of the forward read of the DNA or RNA from the defined condition and replicate.
DNA_UMI or RNA_UMI is the corresponding index read with UMIs (excluding sample barcodes), and
DNA_R or RNA_R of the reverse read.

Multiple fastq files can be used for each column by seperating them with ;.

Right now an UMI have to be used. If you want to use MPRAsnakeflow without an UMI please sitch to MPRAflow or contact us.

Here is an example of an experiment.csv file and it can be downloaded experiment.csv:

	If you would like each insert to be colored based on different user-specified categories, such as positive control, negative control, shuffled control, and putative enhancer. To assess the overall quality, you can create a label.tsv in the format below that maps the name to category as shown here:

insert1_name label1
insert2_name label1
insert3_name label2

The insert names must exactly match the names in the design FASTA file.

	Set up the config file

The config file is the heart of MPRAsnakflow. Here different runs can be configured. We recommend to use one config file per MPRA experiment or MPRA roject. But in theory many different experiments can be configured in only one file. It is divided into global (generell settings), assignments (assigment workflow), and experiments (count workflow including variants).

See Config File for more details about the config file. Here is an example running only the count experiments and using a provided assignment file.

	Run MPRAsnakeflow

conda activate snakemake
snakemake --configfile config/example_config.yaml --use-conda -p --cores 4

Note

This will run in local mode using 4 cores. Please submit this command to your cluster’s queue if you would like to run a highly parallelized version.

Be sure that the files, experiment.csv and the example_config.yaml are correct. All fastq files for the count/experiment part must be in the same folder given by the data_folder option. Please specify your barcode length and umi-length with bc_length and umi_length.

The count files generated by the count workflow, are named: <condition>_<replicate>.merged.config.<config>.tsv.gz and can be found in the results/experiments/<project>/assigned_counts/ folder inside the project folder.

Installation

Installation should take less than 5 minutes

System Requirements

CentOS Linux 7 or above

Required packages

conda (mamba) 4.6 or above

Download here: https://docs.conda.io/en/latest/miniconda.html

snakemake 7.15.1 or above

Download here: https://snakemake.readthedocs.io/

Clone repository

Download here: https://github.com/kircherlab/MPRAsnakeflow.git

Set up conda with snakemake environment

This pipeline uses python2.7 and python3.6 with additional R scripts in a Snakemake pipeline. The .yml files provided will create the appropriate environments and is completely handled by MPRAsnakeflow. The whole pipeline is set up to run on a Linux system.

Install the the conda environment. The general conda environment is called snakemake.

cd MPRAsnakeflow
mamba create -c conda-forge -c bioconda -n snakemake snakemake

activate snakemake
conda activate snakemake

To deactivate the environment, use:

conda deactivate

Quick test

conda activate snakemake
snakemake --help

Config File

The config file is a yaml file that contains the configuration. Different runs can be configured. We recommend to use one config file per MPRA experiment or MPRA project. But in theory many different experiments can be configured in only one file. It is divided into global (generell settings), assignments (assigment workflow), and experiments (count workflow including variants). This is a full example file with all possible configurations. config/example_config.yaml.

 1---
 2global: # generall configs effecting one or multiple parts
 3 threads: 1
 4 assignments:
 5 split_number: 1 # number of files fastq should be split for parallelization
 6assignments:
 7 exampleAssignment: # name of an example assignment (can be any string)
 8 bc_length: 15
 9 sequence_length: # sequence length of design excluding adapters.
10 min: 195
11 max: 205
12 alignment_start: # start of an alignment in the reference. Here using 15 bp adapters. Can be different when using adapter free approaches
13 min: 15 # integer
14 max: 17 # integer
15 min_mapping_quality: 1 # integer >=0 Please use 1 when you have oligos that differ by 1 base in your reference/design file
16 FW:
17 - resources/Assignment_BasiC/R1.fastq.gz
18 BC:
19 - resources/Assignment_BasiC/R2.fastq.gz
20 REV:
21 - resources/Assignment_BasiC/R3.fastq.gz
22 reference: resources/design.fa
23 configs:
24 exampleAssignmentConfig: # name of an example filtering config
25 min_support: 3
26 fraction: 0.7
27experiments:
28 exampleCount:
29 bc_length: 15
30 umi_length: 10
31 data_folder: resources/Count_Basic/data
32 experiment_file: resources/example_experiment.csv
33 demultiplex: false
34 assignments:
35 fromFile:
36 type: file
37 assignment_file: resources/SRR10800986_filtered_coords_to_barcodes.tsv.gz
38 fromWorkflow:
39 type: config
40 assignment_name: exampleAssignment
41 assignment_config: exampleAssignmentConfig
42 design_file: resources/design.fa
43 label_file: resources/labels.tsv # optional
44 configs:
45 exampleConfig:
46 filter:
47 bc_threshold: 10
48 DNA:
49 min_counts: 1
50 RNA:
51 min_counts: 1
52 sampling: # optional, just for benmarking
53 DNA:
54 total: 30000000
55 threshold: 300
56 RNA:
57 total: 50000000
58 threshold: 300
59 variants: # optional
60 map: resources/variant_map.tsv
61 min_barcodes: [5, 10] # min BC for ref and alt sequence

Note that the config file is conrolled by jscon schema. This means that the config file is validated against the schema. If the config file is not valid, the program will exit with an error message. The schema is located in workflow/schemas/config.schema.yaml.

General settings

The general settings are located in the global section. The following settings are possible:

 global:
 type: object
 default:
 threads: 1
 assignments:
 split_number: 1
 properties:
 assignments:
 type: object
 properties:
 split_number:
 type: integer
 default: 1
 additionalProperties: false
 threads:
 type: integer
 default: 1
 additionalProperties: false

	threads:

	Number of threads that are available to run a rule. Right now this is used for bwa mem in the assignment workflow. Be sure to set up the snakemake option -c correctly when using larger number of possible threads. Default is set to 1.

	assignments:

	Global parameters that hold for the assignment workflow.

	split_number:

	To parallize mapping for assignment the reads are split into split_number files. E.g. setting to 300 this means that the reads are split into 300 files and each file is mapped in parallel. This is only usefull when using on a cluster. Running the workflow only on one machine the default value shopuld be used. Default is set to 1.

Assignment workflow

The assignment workflow is configured in the assignments section. The following settings are possible:

 assignments:
 description: Assignments to run with configurations
 type: object
 patternProperties:
 description: name of the assignment
 ^([^_\.]+)$:
 type: object
 patternProperties:
 ^((sequence_length)|(alignment_start))$:
 type: object
 properties:
 min:
 type: integer
 max:
 type: integer
 additionalProperties: false
 required:
 - min
 - max
 properties:
 bc_length:
 type: integer
 BC_rev_comp:
 type: boolean
 default: false
 linker_length:
 type: integer
 linker:
 type: string
 pattern: ^[ATCGNatcgn]+$
 FW:
 type: array
 items:
 type: string
 minItems: 1
 uniqueItems: true
 BC:
 type: array
 items:
 type: string
 minItems: 1
 uniqueItems: true
 REV:
 type: array
 items:
 type: string
 minItems: 1
 uniqueItems: true
 min_mapping_quality:
 type: integer
 default: 1
 minimum: 0
 NGmerge:
 type: object
 properties:
 min_overlap:
 type: integer
 default: 20
 frac_mismatches_allowed:
 type: number
 default: 0.1
 min_dovetailed_overlap:
 type: integer
 default: 50
 required:
 - min_overlap
 - frac_mismatches_allowed
 - min_dovetailed_overlap
 default: {}
 additionalProperties: false
 reference:
 type: string
 configs:
 type: object
 patternProperties:
 ^([^_\.]+)$:
 type: object
 properties:
 min_support:
 type: integer
 minimum: 1
 default: 3
 fraction:
 type: number
 exclusiveMinimum: 0.5
 maximum: 1
 default: 0.7
 unknown_other:
 type: boolean
 default: false
 ambiguous:
 type: boolean
 default: false
 required:
 - min_support
 - fraction
 additionalProperties: false
 additionalProperties: false
 minProperties: 1
 oneOf:
 - required:
 - linker_length
 - required:
 - linker
 - required:
 - BC
 required:
 - FW
 - REV
 - bc_length
 - reference
 - configs
 - alignment_start
 - sequence_length
 - min_mapping_quality
 - NGmerge
 additionalProperties: false
 additionalProperties: false
 minProperties: 1

Each asignment you want to process you have to giv him a name like example_assignment. The name is used to name the output files.

	sequence_length:

	Defines the min and max of a sequence_length specify . sequence_length is basically the length of a sequence alignment to an oligo in the reference file. Because there can be insertion and deletions we recommend to vary it a bit around the exact length (e.g. +-5). In theory this option enables designs with multiple sequence lengths.

	alignment_start:

	Defines the min and max of the start of the alignment in an oligo. When using adapters you have to set basically the length of the adapter. Otherwise 1 will be the choice for most cases. We also recommend to vary this value a bit because the start might not be exact after the adapter. E.g. by +-1.

	min_mapping_quality:

	(Optinal) Defines the minimum mapping quality (MAPQ) of the alinment to an oligo. When using oligos with only 1bp difference it is recommended to set it to 0. Otherwise the default value of 1 is recommended.

	bc_length:

	Length of the barcode. Must match with the length of R2.

	BC_rev_comp:

	(Optional) If set to true the barcode of is reverse complemented. Default is false.

	linker_length:

	(Optional) Length of the linker. Only needed if you don’t have a barcode read and the barcode is in the FW read with the structure: BC+Linker+Insert. The fixed length is used for the linker after a fixed length of BC. The recommended option is linker by defining the exact linker sequence and using cutadapt for trimming.

	linker:

	(Optional) Length of the linker. Only needed if you don’t have a barcode read and the barcode is in the FW read with the structure: BC+Linker+Insert. Uses cutadapt to trim the linker to get the barcode as well as the starting of the insert.

	FW:

	List of forward read files in gzipped fastq format. The full or relative path to the files should be used. Same order in R1, R2, and R3 is important.

	REV:

	list of reverse read files in gzipped fastq format. The full or relative path to the files should be used. Same order in R1, R2, and R3 is important.

	BC:

	List of index read files in gzipped fastq format. The full or relative path to the files should be used. Same order in R1, R2, and R3 is important.

	NGmerge:

	(Optional) Options for NGmerge. NGmerge is used merge FW and REV reads. The following options are possible (we recommend to use the default values):

	min_overlap:

	(Optional) Minimum overlap of the reads. Default is set to 20.

	frac_mismatches_allowed:

	(Optional) Fraction of mismatches allowed in the overlap. Default is set to 0.1.

	min_dovetailed_overlap:

	(Optional) Minimum dovetailed overlap. Default is set to 10.

	reference:

	Design file (full or relative path) in fasta format. The design file should contain the oligos in fasta format. The header should contain the oligo name and should be unique. The sequence should be the sequence of the oligo and must also be unique. When having multiple oligo names with the same sequence please merge them into one fasta entry. The oligo name later used to link barcode to oligo. The sequence is used to map the reads to the oligos. Adapters can be in the seuqence and therefore alignment_start has to be adjusted.

	configs:

	After mapping the reads to the design file and extracting the barcodes per oligo the configuration (using different names) can be used to generate multiple filtering and configuration settings of the final maq oligo to barcode. Each configuration is a dictionary with the following keys:

	min_support:

	Minimum number of same BC that map to teh same oligo. Larger value gives more evidence to be correct. But can remove lot’s of BCs (depedning on the complexity, sequencing depth and quality of sequencing). Recommended option is 3.

	fraction:

	Minumum fraction of same BC that map to teh same oligo. E.g. 0.7 means that at least 70% of the BC map to the same oligo. Larger value gives more evidence to be correct. But can remove lot’s of BCs (depedning on the complexity, sequencing depth and quality of sequencing). Recommended option is 0.7.

	unknown_other:

	(Optional) Shows not mapped BCs in the final output map. Not recommended to use as mapping file fore the experiment workflow. But can be usefull for debugging. Default is false.

	ambigous:

	(Optional) Shows ambigous BCs in the final output map. Not recommended to use as mapping file fore the experiment workflow. But can be usefull for debugging. Default is false.

Experiment workflow (including counts)

The experiment workflow is configured in the experiments section. Each experiment run (contains one experiment file with all replicates of an experiment). The following settings are possible:

 experiments:
 description: MPRA experiments to run with configurations
 type: object
 patternProperties:
 description: name of the experiment
 ^([^_\.]+)$:
 type: object
 properties:
 bc_length:
 type: integer
 minimum: 1
 umi_length:
 type: integer
 minimum: 1
 adapter:
 type: string
 pattern: ^[ATCGNatcgn]+$
 data_folder:
 type: string
 experiment_file:
 type: string
 demultiplex:
 type: boolean
 default: false
 design_file:
 type: string
 label_file:
 type: string
 assignments:
 type: object
 patternProperties:
 ^([^_\.]+)$:
 type: object
 properties:
 type:
 type: string
 enum:
 - file
 - config
 assignment_file:
 type: string
 assignment_name:
 type: string
 assignment_config:
 type: string
 sampling:
 type: object
 properties:
 prop:
 type: number
 exclusiveMinimum: 0
 maximum: 1
 total:
 type: integer
 minimum: 1
 required:
 - type
 additionalProperties: false
 allOf:
 - if:
 properties:
 type:
 const: config
 required:
 - type
 then:
 required:
 - assignment_name
 - assignment_config
 - if:
 properties:
 type:
 const: file
 required:
 - type
 then:
 required:
 - assignment_file
 additionalProperties: false
 configs:
 type: object
 patternProperties:
 ^([^_\.]+)$:
 type: object
 properties:
 filter:
 type: object
 properties:
 bc_threshold:
 type: integer
 minimum: 1
 default: 10
 patternProperties:
 ^((DNA)|(RNA))$:
 type: object
 properties:
 min_counts:
 type: integer
 miminum: 0
 default: 1
 additionalProperties: false
 required:
 - min_counts
 default:
 bc_threshold: 10
 DNA:
 min_counts: 1
 RNA:
 min_counts: 1
 required:
 - bc_threshold
 - DNA
 - RNA
 additionalProperties: false
 sampling:
 type: object
 patternProperties:
 ^((DNA)|(RNA))$:
 type: object
 properties:
 threshold:
 type: integer
 minimum: 1
 prop:
 type: number
 exclusiveMinimum: 0
 maximum: 1
 total:
 type: number
 minimum: 1
 seed:
 type: integer
 additionalProperties: false
 additionalProperties: false
 additionalProperties: false
 required:
 - filter
 additionalProperties: false
 variants:
 type: object
 properties:
 map:
 type: string
 min_barcodes:
 type: array
 items:
 type: integer
 minimum: 1
 required:
 - map
 - min_barcodes
 # entries that have to be in the config file for successful validation
 required:
 - bc_length
 - data_folder
 - experiment_file
 - demultiplex
 - design_file
 - assignments
 - configs
 additionalProperties: false

	bc_length:

	Length of the barcode. This is used to extract the barcode from the index read. The barcode is extracted from the first bc_length bases of the index read. When no reverse read is given and adapter is not set teh exact length is used to extract the DNA BC from the FW read.

	umi_length:

	(Optional) Length of the UMI. This is used to extract the UMI from the index read. The UMI is extracted from the last umi_length bases of the index read. Please provide if you use UMIs.

	adapter:

	(Optional) Adapter sequence in the FW read when no reverse read is given. This is used to trim the sequence and retrieve the BC using cutadapt.

	data_folder:

	Folder where the fastq files are located. Files are defined in the experiment_file. The full or relative path to the folder should be used.

	experiment_file:

	Path to the experiment file. The full or relative path to the file should be used. The experiment file is a comma separated file and is decribed in the Experiment file section.

	demultiplex:

	(Optional) If set to true the reads are demultiplexed. This means that the reads are split into different files for each barcode. This is usefull for further analysis. Default is false.

	design_file:

	Design file (full or relative path) in fasta format. The design file should contain the oligos in fasta format. The header should contain the oligo name and should be unique. The sequence should be the sequence of the oligo and must also be unique. When having multiple oligo names with the same sequence please merge them into one fasta entry. Should be the same as reference in the Assignment workflow.

	label_file:

	(Optional) Path to the label file. The full or relative path to the file should be used. The label file is a tab separated file and contais the oligo name and the label of it. The oligo name should be the same as in the design file. The label is used to group the oligos in the final output, e.g. for plotting.

insert1_name label1
insert2_name label1
insert3_name label2

	assignments:

	Per experiments multiple assignments can be defined (naming them differently). Everey assignment name contains the following configurations:

	type:

	Can be file or config. file means that you use a mapping file which is tab separated and gzipped. It contains in the first column the barcode and in the second column the oligo name. This file can be generated by the Assignment workflow. When using :code:`config`this means that you are referring to a assignment that is specified in this config file.

	assignment_file:

	When using file please insert the path to the assignment file (tsv.gz). When using config please set the name of the config previously described the assignment that should be used.

	assignment_name:

	When using config please insert the name of the assignment specified in the config file.

	assignment_config:

	When using config please insert the name config of the assignment_name you want to use.

	sampling:

	(Optional) Options Randomly removing barcodes in the assignment. Just for debug reasons.

	prop:

	Sample down the BCs in the assignment file to this proporion.

	total:

	Sample down the BCs in the assignment file to this number.

	configs:

	Each experiment run can have multiple configurations including filter and sampling options.

	filter:

	(Optional) Filter options. These options are available

	bc_threshold:

	Minimum number of different BCs required per oligo. A higher value normally increases the correlation betwene replicates but also reduces the number of final oligos. Default option is 10.

	DNA:

	Settings for DNA

	min_counts:

	Mimimum number of DNA counts per barcode. When set to 0 a pseudo count is added. Default option is 1.

	RNA:

	Settings for DNA

	min_counts:

	Mimimum number of RNA counts per barcode. When set to 0 a pseudo count is added. Default option is 1.

	sampling:

	(Optional) Options for sampling counts and barcodes. Just for debug reasons.

	DNA:

	Settings for sampling DNA counts.

	threshold:

	Maximum threshold for DNA counts assigned to a BC.

	prop:

	Sample down the DNA counts to this proporion.

	total:

	Sample down the DNA counts to this number.

	seed:

	Seed for the random DNA sampling.

	RNA:

	Settings for sampling RNA counts.

	threshold:

	Maximum threshold for RNA counts assigned to a BC.

	prop:

	Sample down the RNA counts to this proporion.

	total:

	Sample down the RNA counts to this number.

	seed:

	Seed for the random RNA sampling.

Experiment file

Here we have 4 different options:

Forward, reverse, and UMI read

Experiment file has a header with Condition, Replicate, DNA_BC_F, DNA_UMI, DNA_BC_R, RNA_BC_F, RNA_UMI, and RNA_BC_R. Condition together with replicate have to be a uniqe name. Both field entries are not allowed to have _ and .. Multiple file names are allowd seperating them via ;. An example experiment file can be found here: resources/example_experiment.csv.

Condition,Replicate,DNA_BC_F,DNA_UMI,DNA_BC_R,RNA_BC_F,RNA_UMI,RNA_BC_R
HEPG2,1,SRR10800881_1.fastq.gz,SRR10800881_2.fastq.gz,SRR10800881_3.fastq.gz,SRR10800882_1.fastq.gz,SRR10800882_2.fastq.gz,SRR10800882_3.fastq.gz
HEPG2,2,SRR10800883_1.fastq.gz,SRR10800883_2.fastq.gz,SRR10800883_3.fastq.gz,SRR10800884_1.fastq.gz,SRR10800884_2.fastq.gz,SRR10800884_3.fastq.gz
HEPG2,3,SRR10800885_1.fastq.gz,SRR10800885_2.fastq.gz,SRR10800885_3.fastq.gz,SRR10800886_1.fastq.gz,SRR10800886_2.fastq.gz,SRR10800886_3.fastq.gz

Forward and reverse read

Experiment file has a header with Condition, Replicate, DNA_BC_F, DNA_BC_R, RNA_BC_F, and RNA_BC_R. Condition together with replicate have to be a uniqe name. Both field entries are not allowed to have _ and .. Multiple file names are allowd seperating them via ;.

Only forward read

Experiment file has a header with Condition, Replicate, DNA_BC_F, and RNA_BC_F. Condition together with replicate have to be a uniqe name. Both field entries are not allowed to have _ and .. Multiple file names are allowd seperating them via ;.

Forward, reverse, and UMI read using demultiplex option

Experiment file has a header with Condition, Replicate, BC_DNA, BC_RNA, BC_F, BC_R, UMI, and INDEX. Condition together with replicate have to be a uniqe name. Both field entries are not allowed to have _ and .. Multiple file names are allowd seperating them via ;.

Running MPRAsnakeflow on HPC Cluster

Snakemake gives us the opportunity to run MPRAsnakeflow in a cluster environment. Please check the Snakemake documentation for more information on how to set up a cluster environment. We already configured a cluster environment for SLURM. This can be used to adapt the workflow to other HPC environments.

The configuration (SLURM) of resources for rules can be found in config/sbatch.yml, allowing each process to be run as a separate sbatch command. For running MPRAsnakflow here is a possible command:

snakemake --use-conda --configfile conf/config.yaml --cluster "sbatch --nodes=1 --ntasks={cluster.threads} --mem={cluster.mem} -t {cluster.time} -p {cluster.queue} -o {cluster.output}" --jobs 100 --cluster-config config/sbatch.yaml

Please note that the log folder of the cluster environment has to be generated first, e.g:

mkdir -p logs

Note

Please consult your cluster’s wiki page for cluster specific commands and change cluster Options to reflect these specifications. Additionally, for large libraries, more memory can be specified in this location.

Overview

This pipeline processes sequencing data from Massively Parallel Reporter Assays (MPRAs) to create count tables for candidate sequences tested in the experiment.

This package contains three utilities:

ASSIGNMENT (previous associations)

This utility takes in library association sequencing data (FASTQ) and a design file (FASTA) to assign barcodes to the corresponding elements tested. Functionality includes filtering for quality and coverage of barcodes. This utility must be run before the Experiment (Count) utility. See Assignment for more details.

EXPERIMENT (previous count)

This utility processes sequence data (FASTQ) of barcodes from the DNA and RNA fractions of the MPRA experiment and outputs count tables labeled with the element tested and a label provided in the design file. This utility can process multiple replicates and conditions in a parallelized manner. Based on a user specified flag, the pipeline will either output normalized activity for each tested sequence, or will combine the results into a single count matrix compatible with MPRAnalyze. See Experiment (Count) for more details.

Assignment

[image: _images/MPRAsnakeflow_assignment.png]

Input files

Fastq Files

	2-3 Fastq files from library association sequencing

	Candidate regulatory sequence (CRS) sequencing, forward and reverse read (paired end)

	(optional) Index read with barcode. BC can also be present at the beginning of the in the forward read followed by a linker.

Design File

Fasta file of of CRS sequences with unique headers describing each tested sequence

Example file:

>CRS1
GACGGGAACGTTTGAGCGAGATCGAGGATAGGAGGAGCGGA
>CRS2
GGGCTCTCTTATATTAAGGGGGTGTGTGAACGCTCGCGATT
>CRS3
GGCGCGCTTTTTCGAAGAAACCCGCCGGAGAATATAAGGGA
>CRS4
TTAGACCGCCCTTTACCCCGAGAAAACTCAGCTACACACTC

snakemake

Options

With --help or -h you can see the help message.

	Mandatory arguments:
	
	--cores:

	Use at most N CPU cores/jobs in parallel. If N is omitted or ‘all’, the limit is set to the number of available CPU cores. In case of cluster/cloud execution, this argument sets the number of total cores used over all jobs (made available to rules via workflow.cores).(default: None)

	--configfile:

	Specify or overwrite the config file of the workflow (see the docs). Values specified in JSON or YAML format are available in the global config dictionary inside the workflow. Multiple files overwrite each other in the given order. Thereby missing keys in previous config files are extended by following configfiles. Note that this order also includes a config file defined in the workflow definition itself (which will come first). (default: None)

	--use-conda:

	Required to run MPRAsnakeflow. If defined in the rule, run job in a conda environment. If this flag is not set, the conda directive is ignored. (default: False)

	Recommended arguments:
	
	--snakefile:

	You should not need to specify this. By default, Snakemake will search for ‘Snakefile’, ‘snakefile’, ‘workflow/Snakefile’,’workflow/snakefile’ beneath the current working directory, in this order. Only if you definitely want a different layout, you need to use this parameter. This is very usefull when you want to have the results in a different folder than MPRAsnakeflow is in. (default: None)

	Usefull arguments:
	
	-n:

	Do not execute anything, and display what would be done. If you have a very large workflow, use –dry-run –quiet to just print a summary of the DAG of jobs. (default: False)

	--touch, -t:

	Touch output files (mark them up to date without really changing them) instead of running their commands. This is used to pretend that the rules were executed, in order to fool future invocations of snakemake. Fails if a file does not yet exist. Note that this will only touch files that would otherwise be recreated by Snakemake (e.g. because their input files are newer). For enforcing a touch, combine this with –force, –forceall, or –forcerun. Note however that you loose the provenance information when the files have been created in realitiy. Hence, this should be used only as a last resort. (default: False)

Rules

Rules run by snakemake in the assignment utility.

	all
	The overall all rule. Here is defined what final output files are expected.

	assignment_attach_idx
	Extract the index sequence and add it to the header.

	assignment_bwa_ref
	Create mapping reference for BWA from design file.

	assignment_collect
	Collect mapped reads into one BAM.

	assignment_collectBCs
	Get the barcodes.

	assignment_fastq_split
	Split the fastq files into n files for parallelisation. N is given by split_read in the configuration file.

	assignment_getInputs
	Concat the input fastq files per R1,R2,R3. If only single fastq file is provided a symbolic link is created.

	assignment_hybridFWRead_get_reads_by_length
	Get the barcode and read from the FW read using fixed length (when no index BC read is present).

	assignmemt_hybridFWRead_get_reads_by_cutadapt
	Get the barcode and read from the FW read using cutadapt (when no index BC read is present). Uses the paired end mode of cutadapt to write the FW and BC read.

	assignment_merge
	Merge the FW,REV and BC fastq files into one. Extract the index sequence from the middle and end of an Illumina run. Separates reads for Paired End runs. Merge/Adapter trim reads stored in BAM.

	assignment_mapping
	Map the reads to the reference.

	assignment_idx_bam
	Index the BAM file

	assignment_flagstat
	Run samtools flagstat. Results are in results/assignment/<assignment_name>/statistic/assignment/bam_stats.txt

	assignment_getBCs
	Get the barcodes (not filtered). Results are in results/assignment/<assignment_name>/barcodes_incl_other.sorted.tsv.gz

	assignment_statistic_totalCounts
	Statistic of the total (unfiltered counts). Results are in results/assignment/<assignment_name>/statistic/total_counts.tsv.gz

	assignment_filter
	Filter the barcodes file based on the config given in the config-file. Results for this run are here results/assignment/<assignment_name>/assignment_barcodes.<config_name>.sorted.tsv.gz.

	assignment_statistic_assignedCounts
	Statistic of filtered the assigned counts. Result is here results/assignment/<assignment_name>/statistic/assigned_counts.<config_name>.tsv.gz.

	assignment_statistic_assignment
	Statistic of the filtered assignment. Result is here results/assignment/<assignment_name>/statistic/assignment.<config_name>.tsv.gz and a plot here results/assignment/<assignment_name>/statistic/assignment.<config_name>.png.

Output

The output can be found in the folder defined by the option results/assignment/. It is structured in folders of the condition as

Files

File tree of the result folder (names in < > can be specified in the config file.)

├── assignment
│ └── <assignment_name>
│ ├── aligned_merged_reads.bam
│ ├── aligned_merged_reads.bam.bai
│ ├── assignment_barcodes.<config_name>.sorted.tsv.gz
│ ├── barcodes_incl_other.sorted.tsv.gz
│ ├── reference
│ │ ├── reference.fa
│ │ ├── reference.fa.amb
│ │ ├── reference.fa.ann
│ │ ├── reference.fa.bwt
│ │ ├── reference.fa.dict
│ │ ├── reference.fa.fai
│ │ ├── reference.fa.pac
│ │ └── reference.fa.sa
│ └── statistic
│ ├── assigned_counts.<config_name>.tsv.gz
│ ├── assignment
│ │ └── bam_stats.txt
│ ├── assignment.<config_name>.png
│ ├── assignment.<config_name>.tsv.gz
│ └── total_counts.tsv.gz

	total_counts.tsv.gz
	Statistic of BCs mapped to oligos.

	assigned_counts.<config_name>.tsv.gz
	Statistic of BCs mapped to oligos after fitering defined by config.

	assignment.<config_name>.tsv.gz
	Average/median support of BC per oligo. Oligos with >= 15 BCs.

	reference.fa
	Design file.

	aligned_merged_reads.bam
	Sorted bamfile for oligo alignment

	barcodes_incl_other.sorted.tsv.gz
	Complete list of all barcodes found in mapping file (ambigous and unambigous) with mappings (if possible)

	assignment_barcodes.<config_name>.sorted.tsv.gz
	Mapping file of barcodes to sequence.

	assignment.<config_name>.png
	Visualization of number of barcodes mapping to oligo.

	bam_stats.txt
	samtools bamstat output.

Experiment (Count)

[image: _images/Count_util.png]

Input files

Experiment File

Comma separated file (CSV) that assigns all fastq files present in a directory to a condidtion and replicate. Each line represents an experiment, which will all be processed in parallel

Condition,Replicate,DNA_BC_F,DNA_UMI,DNA_BC_R,RNA_BC_F,RNA_UMI,RNA_BC_R
Condidtion1,1,C1R1_DNA_barcode_F.fastq.gz,C1R1_DNA_barcode_UMI.fastq.gz,C1R1_DNA_barcode_R.fastq.gz,C1R1_RNA_barcode_F.fastq.gz,C1R1_RNA_barcode_UMI.fastq.gz,C1R1_RNA_barcode_R.fastq.gz
Condidtion1,2,C1R2_DNA_barcode_F.fastq.gz,C1R2_DNA_barcode_UMI.fastq.gz,C1R2_DNA_barcode_R.fastq.gz,C1R2_RNA_barcode_F.fastq.gz,C1R2_RNA_barcode_UMI.fastq.gz,C1R2_RNA_barcode_R.fastq.gz
Condidtion1,3,C1R3_DNA_barcode_F.fastq.gz,C1R3_DNA_barcode_UMI.fastq.gz,C1R3_DNA_barcode_R.fastq.gz,C1R3_RNA_barcode_F.fastq.gz,C1R3_RNA_barcode_UMI.fastq.gz,C1R3_RNA_barcode_R.fastq.gz
Condidtion2,1,C2R1_DNA_barcode_F.fastq.gz,C2R1_DNA_barcode_UMI.fastq.gz,C2R1_DNA_barcode_R.fastq.gz,C2R1_RNA_barcode_F.fastq.gz,C2R1_RNA_barcode_UMI.fastq.gz,C2R1_RNA_barcode_R.fastq.gz
Condidtion2,2,C2R2_DNA_barcode_F.fastq.gz,C2R2_DNA_barcode_UMI.fastq.gz,C2R2_DNA_barcode_R.fastq.gz,C2R2_RNA_barcode_F.fastq.gz,C2R2_RNA_barcode_UMI.fastq.gz,C2R2_RNA_barcode_R.fastq.gz
Condidtion2,3,C2R3_DNA_barcode_F.fastq.gz,C2R3_DNA_barcode_UMI.fastq.gz,C2R3_DNA_barcode_R.fastq.gz,C2R3_RNA_barcode_F.fastq.gz,C2R3_RNA_barcode_UMI.fastq.gz,C2R3_RNA_barcode_R.fastq.gz

Design File

Fasta file of of CRS sequences with unique headers describing each tested sequence

Example file:

>CRS1
GACGGGAACGTTTGAGCGAGATCGAGGATAGGAGGAGCGGA
>CRS2
GGGCTCTCTTATATTAAGGGGGTGTGTGAACGCTCGCGATT
>CRS3
GGCGCGCTTTTTCGAAGAAACCCGCCGGAGAATATAAGGGA
>CRS4
TTAGACCGCCCTTTACCCCGAGAAAACTCAGCTACACACTC

Assignment File or configuration

Tab separated gzipped file with barcode mapped to sequence. Can be generated using the Assignment workflow. Config file must be configured similar to this:

example_assignment:
 type: file
 value: /path/to/your/file.tsv.gz

Example assignment file:

ATGCGT CRS1
GTCGA CRS2
CCGTT CRS3
CCCCT CRS4

Another option would be referring to an assignment defined in a config file.

example_assignment:
 type: config
 value: example_config

Label File (Optional)

Tab separated file (TSV) of desired labels for each tested sequence

Example file:

CRS1 Positive_Control
CRS2 Negative_Control
CRS3 Test
CRS4 Positive_Control

Note

If you provide a label file, the first column of the label file must exactly match the FASTA file or the files will not merge properly in the pipeline.

snakemake

Options

With --help or -h you can see the help message.

	Mandatory arguments:
	
	--cores:

	Use at most N CPU cores/jobs in parallel. If N is omitted or ‘all’, the limit is set to the number of available CPU cores. In case of cluster/cloud execution, this argument sets the number of total cores used over all jobs (made available to rules via workflow.cores).(default: None)

	--configfile:

	Specify or overwrite the config file of the workflow (see the docs). Values specified in JSON or YAML format are available in the global config dictionary inside the workflow. Multiple files overwrite each other in the given order. Thereby missing keys in previous config files are extended by following configfiles. Note that this order also includes a config file defined in the workflow definition itself (which will come first). (default: None)

	--use-conda:

	Required to run MPRAsnakeflow. If defined in the rule, run job in a conda environment. If this flag is not set, the conda directive is ignored. (default: False)

	Recommended arguments:
	
	--snakefile:

	You should not need to specify this. By default, Snakemake will search for ‘Snakefile’, ‘snakefile’, ‘workflow/Snakefile’,’workflow/snakefile’ beneath the current working directory, in this order. Only if you definitely want a different layout, you need to use this parameter. This is very usefull when you want to have the results in a different folder than MPRAsnakeflow is in. (default: None)

	Usefull arguments:
	
	-n:

	Do not execute anything, and display what would be done. If you have a very large workflow, use –dry-run –quiet to just print a summary of the DAG of jobs. (default: False)

	--touch, -t:

	Touch output files (mark them up to date without really changing them) instead of running their commands. This is used to pretend that the rules were executed, in order to fool future invocations of snakemake. Fails if a file does not yet exist. Note that this will only touch files that would otherwise be recreated by Snakemake (e.g. because their input files are newer). For enforcing a touch, combine this with –force, –forceall, or –forcerun. Note however that you loose the provenance information when the files have been created in realitiy. Hence, this should be used only as a last resort. (default: False)

Rules

Rules run by snakemake in the assignment utility. Some rules will be run only if certain options used and are marked below.

	create_BAM or create_BAM_noUMI (if no UMI sequence)
	creates a bamfile of barcode and UMI sequences

	raw_counts
	creates a table of counts for each barcode (where UMIs, if present, are deduplicated)

	filter_counts
	Remove barcodes that are not the appropriate length

	final_counts
	Record overrepresended UMIs and final count table

	dna_rna_merge_counts or dna_rna_mpranalyze_merge
	Merge RNA/DNA count matrices per barcode

	final_merge (MPRAnalyze option only)
	Merge all DNA/RNA counts into one file

	final_label (MPRAnalyze option only)
	Label the barcodes

	generate_mpranalyze_inputs (MPRAnalyze option only)
	Generate inputs for MPRAnalyze, counts tables and annotation tables for rna/dna

	dna_rna_merge
	Merge each DNA and RNA file label with sequence and insert and normalize

	calc_correlations
	Calculate correlations between Replicates

	make_master_tables
	Create tables of each CRS normalized across replicates

Output

The output can be found in the folder defined by the option results/experiments/. It is structured in folders of the condition as

Files

File tree

experimet_name
 |-Condition
 |-allreps.tsv
 |-average_allreps.tsv
 |-HepG2_1_2_correlation.txt
 |-HepG2_1_2_DNA_pairwise.png
 |-HepG2_1_2_Ratio_pairwise.png
 |-HepG2_1_2_RNA_pairwise.png
 |-HepG2_all_barcodesPerInsert_box.png
 |-HepG2_barcodesPerInsert.png
 |-Reps
 |-HepG2_1_counts.tsv
 |-HepG2_1_counts.tsv.gz
 |-HepG2_1_DNA_counts_full.tsv
 |-HepG2_1_DNA_counts_full_samplingN.tsv
 |-HepG2_1_DNA_raw_counts.tsv.gz
 |-HepG2_1_RNA_filtered_counts.tsv.gz
 |-HepG2_1_DNA_filtered_counts.tsv.gz
 |-HepG2_1_RNA_counts.tsv
 |-HepG2_1_RNA_raw_counts.tsv.gz

Todo

This is not the correct file tree for the experiment workflow

Files for each Condition

	allreps.tsv
	TSV of normalized DNA and RNA count, ratio, log2ratio, and number of observed barcodes for each condition, replicate, of every CRS

	average_allreps.tsv
	mean ratio, log2 ratio, and observed barcodes per condidition normalized for all replicates

	HepG2_1_2_correlation.txt
	correlation values for a condition and 2 replicates (ie: HepG2 replicate 1 vs replicate 2)

	HepG2_1_2_DNA_pairwise.png
	Correlation plot of DNA counts condition vs two reps (ie: HepG2 replicate 1 vs replicate 2)

	HepG2_1_2_Ratio_pairwise.png
	Correlation plot of normalized log2(RNA/DNA) condition vs two reps (ie: HepG2 replicate 1 vs replicate 2)

	HepG2_1_2_RNA_pairwise.png
	Correlation plot of RNA counts condition vs two reps (ie: HepG2 replicate 1 vs replicate 2)

	HepG2_all_barcodesPerInsert_box.png
	Box plot of each CRS accross replicates for all barcodes in each condidtion. Colored by the label file.

	HepG2_barcodesPerInsert.png
	Histogram of number of barcodes detected per CRS

	HepG2_group_barcodesPerInsert_box.png
	Boxplot of CRS normalized per insert, grouped by labels

Todo

These are not the correct files for each condition in the experiment workflow

Files for each replicate in each condition

	HepG2_1_counts.tsv
	mean ratio, log2 ratio, and observed barcodes per condidition for each replicate

	HepG2_1_counts.tsv.gz
	table of barcodes with DNA counts and RNA counts

	HepG2_1_DNA_counts_full.tsv
	table of barcodes with DNA counts

	HepG2_1_DNA_counts_full_samplingN.tsv
	table of barcodes with DNA counts with adjusted sampling.

	HepG2_1_DNA_raw_counts.tsv.gz
	table of barcodes, UMI, and DNA counts raw

	HepG2_1_DNA_filtered_counts.tsv.gz
	table of barcodes, UMI, and DNA counts raw, filtered for barcodes of correct length

	HepG2_1_RNA_counts.tsv
	table of barcodes with RNA counts

	HepG2_1_RNA_raw_counts.tsv.gz
	table of barcodes, UMI, and RNA counts raw

	HepG2_1_RNA_filtered_counts.tsv.gz
	table of barcodes, UMI, and DNA counts raw, filtered for barcodes of correct length

Todo

These are not the correct files for the experiment workflow

Basic assignment workflow

This example runs the assignment workflow on 5’/5’ WT MRPA data in the HEPG2 cell line from Klein J., Agarwal, V., Keith, A., et al. 2019 [https://www.biorxiv.org/content/10.1101/576405v1.full.pdf].

Prerequirements

This example depends on the following data and software:

Installation of MPRAsnakeflow

Please install conda, the MPRAsnakeflow environment and clone the actual MPRAsnakeflow master branch. You will find more help under Installation.

Meta Data

It is necessary to get the ordered oligo array so that each enhancer sequence can be labeled in the analysis and to trim any adaptors still in the sequence, in this case we trim off 15bp from the end of each sequence

mkdir -p assoc_basic/data
cd assoc_basic/data
wget ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM4237nnn/GSM4237954/suppl/GSM4237954_9MPRA_elements.fa.gz

zcat GSM4237954_9MPRA_elements.fa.gz |awk '{ count+=1; if (count == 1) { print } else { print substr($1,1,171)}; if (count == 2) { count=0 } }' > design.fa

Reads

There is one set of association sequencing for this data, which contains a forward (CRS-forward), reverse (CRS-reverse), and index (barcode) read for DNA and RNA. These data must be downloaded. All data is publically available on the short read archive (SRA). We will use SRA-toolkit to obtain the data.

Note

You need 10 GB disk space to download the data!

conda install sra-tools
cd assoc_basic/data
fastq-dump --gzip --split-files SRR10800986
cd ..

For large files and unstable internet connection we reccommend the comand prefetch from SRA tools before running fastq-dump. This command is much smarter in warnings when something went wrong.

conda install sra-tools
cd assoc_basic/data
prefetch SRR10800986
fastq-dump --gzip --split-files SRR10800986
cd ..

Note

Please be sure that all files are downloaded completely without errors! Depending on your internet connection this can take a while. If you just want some data to run MPRsnakeAflow you can just limit yourself to one condition and/or just one replicate.

With

tree data

the folder should look like this:

data
├── design.fa
├── SRR10800986_1.fastq.gz
├── SRR10800986_2.fastq.gz
└── SRR10800986_3.fastq.gz

Here is an overview of the files:

HEPG2 association data

	Condition

	GEO Accession

	SRA Accession

	SRA Runs

	HEPG2-association: HEPG2 library association

	GSM4237954

	SRX7474872

	SRR10800986

MPRAsnakeflow

Now we are ready to run MPRAsnakeflow and create CRS-barcode mappings.

Run snakemake

Now we have everything at hand to run the count MPRAsnakeflow pipeline. We will run the pipeline directly in the assoc_basic folder. The MPRAsnakeflow workflow can be in a different directory. Let’s assume /home/user/MPRAsnakeflow.

First we have to configure the config file and save it to the assoc_basic folder. The config file is a simple text file with the following content:

global:
 threads: 10
 assignments:
 split_number: 30
assignments:
 assocBasic:
 bc_length: 15
 sequence_length:
 min: 166
 max: 175
 alignment_start:
 min: 1
 max: 3
 R1:
 - data/SRR10800986_1.fastq.gz
 R2:
 - data/SRR10800986_2.fastq.gz
 R3:
 - data/SRR10800986_3.fastq.gz
 reference: data/design.fa
 configs:
 exampleConfig:
 min_support: 3
 fraction: 0.7
 unknown_other: true
 ambiguous: true
 exampleConfigTrueMatches:
 min_support: 3
 fraction: 0.7
 unknown_other: false
 ambiguous: false

First we do a try run using snakemake -n option. The MPRAsnakeflow command is:

cd assoc_basic
conda activate mprasnakeflow
snakemake -c 1 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile config.yml -n

You should see a list of rules that will be executed. This is the summary:

Job stats:
job count min threads max threads
----------------------------------- ------- ------------- -------------
all 1 1 1
assignment_bwa_ref 1 1 1
assignment_fastq_split 3 1 1
assignment_filter 2 1 1
assignment_flagstat 1 1 1
assignment_getBCs 1 1 1
assignment_idx_bam 1 1 1
assignment_mapping 1 1 1
assignment_merge 30 10 10
assignment_statistic_assignedCounts 2 1 1
assignment_statistic_assignment 2 1 1
assignment_statistic_totalCounts 1 1 1
total 46 1 1

When dry-drun does not give any errors we will run the workflow. We use a machine with 30 threads/cores to run the workflow. Therefore split_number is set to 30 to parallize the workflow. Also we are using 10 threads for mapping (bwa mem). But snakemake takes care that no more than 30 threads are used.

snakemake -c 30 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile /home/user/MPRAsnakeflow/resources/assoc_basic/config.yml

Note

Please modify your code when running in a cluster environment. We have an example SLURM config file here config/sbatch.yml.

If everything works fine the 12 rules showed above will run:

	all
	The overall all rule. Here is defined what final output files are expected.

	assignment_bwa_ref
	Create mapping reference for BWA from design file.

	assignment_fastq_split
	Split the fastq files into n files for parallelisation. N is given by split_read in the configuration file.

	assignment_merge
	Merge the FW,REV and BC fastq files into one. Extract the index sequence from the middle and end of an Illumina run. Separates reads for Paired End runs. Merge/Adapter trim reads stored in BAM.

	assignment_mapping
	Map the reads to the reference.

	assignment_idx_bam
	Index the BAM file

	assignment_flagstat
	Run samtools flagstat. Results are in results/assignment/assocBasic/statistic/assignment/bam_stats.txt

	assignment_getBCs
	Get the barcodes (not filtered). Results are in results/assignment/assocBasic/barcodes_incl_other.sorted.tsv.gz

	assignment_statistic_totalCounts
	Statistic of the total (unfiltered counts). Results are in results/assignment/assocBasic/statistic/total_counts.tsv.gz

	assignment_filter
	Filter the barcodes file based on the config given in the config-file. Results for this run are here results/assignment/assocBasic/assignment_barcodes.exampleConfigTrueMatches.sorted.tsv.gz (exampleConfigTrueMatches) and here results/assignment/assocBasic/assignment_barcodes.exampleConfig.sorted.tsv.gz (exampleConfig)

	assignment_statistic_assignedCounts
	Statistic of filtered the assigned counts. Result is here results/assignment/assocBasic/statistic/assigned_counts.exampleConfigTrueMatches.tsv.gz (exampleConfigTrueMatches) or results/assignment/assocBasic/statistic/assigned_counts.exampleConfig.tsv.gz (exampleConfig)

	assignment_statistic_assignment
	Statistic of the filtered assignment. Result is here results/assignment/assocBasic/statistic/assignment.exampleConfigTrueMatches.tsv.gz and a plot here results/assignment/assocBasic/statistic/assignment.exampleConfigTrueMatches.png. (also files are available for the config exampleConfig).

Results

All needed output files will be in the results/assignment/assocBasic folder. The final assignment is in results/assignment/assocBasic/assignment_barcodes.exampleConfigTrueMatches.sorted.tsv.gz or results/assignment/assocBasic/assignment_barcodes.exampleConfig.sorted.tsv.gz depeding on the filtering in the config file.

Note

Please note that for the experiment/count workflow you have to remove ambigous BCs. Therefore the file results/assignment/assocBasic/assignment_barcodes.exampleConfigTrueMatches.sorted.tsv.gz is the correct wone

Total file tree of the results folder:

results
├── assignment
│ └── assocBasic
│ ├── aligned_merged_reads.bam
│ ├── aligned_merged_reads.bam.bai
│ ├── assignment_barcodes.exampleConfig.sorted.tsv.gz
│ ├── assignment_barcodes.exampleConfigTrueMatches.sorted.tsv.gz
│ ├── barcodes_incl_other.sorted.tsv.gz
│ ├── reference
│ │ ├── reference.fa
│ │ ├── reference.fa.amb
│ │ ├── reference.fa.ann
│ │ ├── reference.fa.bwt
│ │ ├── reference.fa.dict
│ │ ├── reference.fa.fai
│ │ ├── reference.fa.pac
│ │ └── reference.fa.sa
│ └── statistic
│ ├── assigned_counts.exampleConfigTrueMatches.tsv.gz
│ ├── assigned_counts.exampleConfig.tsv.gz
│ ├── assignment
│ │ └── bam_stats.txt
│ ├── assignment.exampleConfig.png
│ ├── assignment.exampleConfigTrueMatches.png
│ ├── assignment.exampleConfigTrueMatches.tsv.gz
│ ├── assignment.exampleConfig.tsv.gz
│ └── total_counts.tsv.gz

Basic Experiment workflow

This example runs the count workflow on 5’/5’ WT MPRA data in the HepG2 cell line from Klein J., Agarwal, V., Keith, A., et al. 2019 [https://www.biorxiv.org/content/10.1101/576405v1.full.pdf].

Prerequirements

This example depends on the following data and software:

Installing MPRAsnakeflow

Please install conda, the MPRAsnakeflow environment, and clone the actual MPRAsnakeflow master branch. You will find more help under Installation.

Producing an association (.tsv.gz) file

This workflow requires a python dictionary of candidate regulatory sequence (CRS) mapped to their barcodes in a tab separated (.tsv) format. For this example the file can be generated using Basic assignment workflow or it can be found in resources/count_basic folder in MPRAsnakelfow <https://github.com/kircherlab/MPRAsnakeflow/>`_(file :code:`SRR10800986_barcodes_to_coords.tsv.gz).

Alternatively, if the association file is in pickle (.pickle) format because you used MPRAflow, you can convert the same file to .tsv.gz format with the in-built function in MPRsnakeflow with the following code:

conda activate mprasnakeflow
python assignment_pickle_to_tsv.py --input <assignment_file>.pickle | sort | uniq | gzip -c > <assignment_file>.tsv.gz

Design (.fa) file

File can be generated using the Basic assignment workflow or downloaded from the resources/count_basic folder in MPRAsnakelfow [https://github.com/kircherlab/MPRAsnakeflow/].

Reads

There is one condition (HEPG2) with three technical replicates. Each replicate contains a forward (barcode-forward), reverse (barcode-reverse), and index (unique molecular identifier) read for DNA and RNA. These data must be downloaded. All data is publically available on the short read archive (SRA). We will use SRA-toolkit to obtain the data.

Note

You need 9 GB disk space to download the data and upwards of 50 GB to proccess it!

conda install sra-tools
mkdir -p count_basic/data
cd count_basic/data
fastq-dump --gzip --split-files SRR10800881 SRR10800882 SRR10800883 SRR10800884 SRR10800885 SRR10800886
cd ..

For large files and unstable internet connection we reccommend the comand prefetch from SRA tools before running fastq-dump. This command is much smarter in warnings when something went wrong.

conda install sra-tools
cd count_basic/data
prefetch SRR10800881 SRR10800882 SRR10800883 SRR10800884 SRR10800885 SRR10800886
fastq-dump --gzip --split-files SRR10800986
cd ..

Note

Please be sure that all files are downloaded completely without errors! Depending on your internet connection this can take a while. If you just want some data to run MPRAsnakeflow, you can just limit yourself to one condition and/or just one replicate.

The data folder view can be seen with the following command:

tree data

The folder should look like this:

data
├── design.fa
├── SRR10800881_1.fastq.gz
├── SRR10800881_2.fastq.gz
├── SRR10800881_3.fastq.gz
├── SRR10800882_1.fastq.gz
├── SRR10800882_2.fastq.gz
├── SRR10800882_3.fastq.gz
├── SRR10800883_1.fastq.gz
├── SRR10800883_2.fastq.gz
├── SRR10800883_3.fastq.gz
├── SRR10800884_1.fastq.gz
├── SRR10800884_2.fastq.gz
├── SRR10800884_3.fastq.gz
├── SRR10800885_1.fastq.gz
├── SRR10800885_2.fastq.gz
├── SRR10800885_3.fastq.gz
├── SRR10800886_1.fastq.gz
├── SRR10800886_2.fastq.gz
├── SRR10800886_3.fastq.gz
└── SRR10800986_barcodes_to_coords.tsv.gz

Here is an overview of the files:

HEPG2 data

	Condition

	GEO Accession

	SRA Accession

	SRA Runs

	HEPG2-DNA-1: HEPG2 DNA replicate 1

	GSM4237863

	SRX7474781

	SRR10800881

	HEPG2-RNA-1: HEPG2 RNA replicate 1

	GSM4237864

	SRX7474782

	SRR10800882

	HEPG2-DNA-2: HEPG2 DNA replicate 2

	GSM4237865

	SRX7474783

	SRR10800883

	HEPG2-RNA-2: HEPG2 RNA replicate 2

	GSM4237866

	SRX7474784

	SRR10800884

	HEPG2-DNA-3: HEPG2 DNA replicate 3

	GSM4237867

	SRX7474785

	SRR10800885

	HEPG2-RNA-3: HEPG2 RNA replicate 3

	GSM4237868

	SRX7474786

	SRR10800886

Run MPRAsnakeflow

Now we are close to starting MPRAsnakeflow and count the number of barcodes. But before we need to generate an environment (.csv) file to tell snakemake the conditions, replicates and the corresponding reads.

Creating experiment.csv

Our experiment file looks exactly like this:

Condition,Replicate,DNA_BC_F,DNA_UMI,DNA_BC_R,RNA_BC_F,RNA_UMI,RNA_BC_R
HEPG2,1,SRR10800881_1.fastq.gz,SRR10800881_2.fastq.gz,SRR10800881_3.fastq.gz,SRR10800882_1.fastq.gz,SRR10800882_2.fastq.gz,SRR10800882_3.fastq.gz
HEPG2,2,SRR10800883_1.fastq.gz,SRR10800883_2.fastq.gz,SRR10800883_3.fastq.gz,SRR10800884_1.fastq.gz,SRR10800884_2.fastq.gz,SRR10800884_3.fastq.gz
HEPG2,3,SRR10800885_1.fastq.gz,SRR10800885_2.fastq.gz,SRR10800885_3.fastq.gz,SRR10800886_1.fastq.gz,SRR10800886_2.fastq.gz,SRR10800886_3.fastq.gz

Save it into the count_basic/data folder under experiment.csv.

MPRAsnakeflow

Now we have everything at hand to run the count MPRAsnakeflow pipeline. We will run the pipeline directly in the count_basic folder. The MPRAsnakeflow workflow can be in a different directory. Let’s assume /home/user/MPRAsnakeflow. The MPRAsnakeflow count command is:

First we have to configure the config file and save it to the count_basic folder. The config file is a simple text file with the following content:

experiments:
 exampleCount:
 bc_length: 15
 umi_length: 10
 data_folder: data
 experiment_file: data/experiment.csv
 demultiplex: false
 assignments:
 fromFile:
 type: file
 assignment_file: data/SRR10800986_barcodes_to_coords.tsv.gz
 design_file: data/design.fa
 configs:
 exampleConfig:
 filter:
 bc_threshold: 10
 DNA:
 min_counts: 1
 RNA:
 min_counts: 1

First we do a try run using snakemake -n option. The MPRAsnakeflow command is:

cd count_basic
conda activate mprasnakeflow
snakemake -c 1 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile config.yml -n

You should see a list of rules that will be executed. This is the summary:

Job stats:
job count min threads max threads
-- ------- ------------- -------------
all 1 1 1
assigned_counts_assignBarcodes 6 1 1
assigned_counts_dna_rna_merge 3 1 1
assigned_counts_filterAssignment 1 1 1
assigned_counts_make_master_tables 1 1 1
counts_create_BAM_umi 6 1 1
counts_dna_rna_merge_counts 6 1 1
counts_filter_counts 6 1 1
counts_final_counts_umi 6 1 1
counts_raw_counts_umi 6 1 1
statistic_assigned_counts_combine_BC_assignment_stats 1 1 1
statistic_assigned_counts_combine_BC_assignment_stats_helper 1 1 1
statistic_assigned_counts_combine_stats_dna_rna_merge 1 1 1
statistic_assigned_counts_combine_stats_dna_rna_merge_all 1 1 1
statistic_bc_overlap_combine_assigned_counts 1 1 1
statistic_bc_overlap_combine_counts 1 1 1
statistic_bc_overlap_run 4 1 1
statistic_correlation_bc_counts 2 1 1
statistic_correlation_calculate 1 1 1
statistic_correlation_combine_bc_assigned 1 1 1
statistic_correlation_combine_bc_raw 1 1 1
statistic_correlation_combine_oligo 1 1 1
statistic_counts_BC_in_RNA_DNA 6 1 1
statistic_counts_BC_in_RNA_DNA_merge 2 1 1
statistic_counts_barcode_base_composition 6 1 1
statistic_counts_final 2 1 1
statistic_counts_frequent_umis 6 1 1
statistic_counts_stats_merge 2 1 1
statistic_counts_table 12 1 1
total 94 1 1

When dry-drun does not give any errors we will run the workflow. We use a machine with 30 threads/cores to run the workflow. The MPRAsnakeflow command is:

snakemake -c 30 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile config.yml

Note

Please modify your code when running in a cluster environment. We have an example SLURM config file here config/sbatch.yml.

If everything works fine the 29 rules showed above will run. Everything starting with counts_ beolngs to raw count rules, with assigned_counts_ to counts assigned to the assignment and statistic_ to statistics. Here is a brief description of the rules.

	all
	The overall all rule. Here is defined what final output files are expected.

	counts_create_BAM_umi
	Create a BAM file from FASTQ input, merge FW and REV read and save UMI in XI flag.

	counts_raw_counts_umi
	Counting BCsxUMIs from the BAM files.

	counts_filter_counts
	Filter the counts to BCs only of the correct length (defined in the config file).

	counts_final_counts_umi
	Discarding PCR duplicates (taking BCxUMI only one time). Final result of counts can be found here: results/experiments/exampleCount/counts/HepG2_<1,2,3>_<DNA/RNA>_filtered_counts.tsv.gz.

	counts_dna_rna_merge_counts
	Merge DNA and RNA counts together.
This is done in two ways. First no not allow zeros in DNA or RNA BCs (when min_counts is not zero for DNA and RNA).
Second with zeros, so a BC can be defined only in the DNA or RNA (when min_counts is zero for DNA or RNA)

	assigned_counts_filterAssignment
	Use only unique assignments.

	assigned_counts_assignBarcodes
	Assign RNA and DNA barcodes seperately to make the statistic for assigned.

	assigned_counts_dna_rna_merge
	Assign merged RNA/DNA barcodes. Filter BC depending on the min_counts option. Output for each replicate is here: results/experiments/exampleCount/assigned_counts/fromFile/exampleConfig/HepG2_<1,2,3>_merged_assigned_counts.tsv.gz.

	assigned_counts_make_master_tables
	Final master table with all replicates combined. Output is here: results/experiments/exampleCount/assigned_counts/fromFile/exampleConfig/HepG2_allreps_merged.tsv.gz and using the bc-threshold here results/experiments/exampleCount/assigned_counts/fromFile/exampleConfig/HepG2_allreps_minThreshold_merged.tsv.gz.

	statistic_assigned_counts_combine_BC_assignment_stats
	TODO

	statistic_assigned_counts_combine_BC_assignment_stats_helper
	TODO

	statistic_assigned_counts_combine_stats_dna_rna_merge
	TODO

	statistic_assigned_counts_combine_stats_dna_rna_merge_all
	TODO

	statistic_bc_overlap_combine_assigned_counts
	TODO

	statistic_bc_overlap_combine_counts
	TODO

	statistic_bc_overlap_run
	TODO

	statistic_correlation_bc_counts
	TODO

	statistic_correlation_calculate
	TODO

	statistic_correlation_combine_bc_assigned
	TODO

	statistic_correlation_combine_bc_raw
	TODO

	statistic_correlation_combine_oligo
	TODO

	statistic_counts_BC_in_RNA_DNA
	TODO

	statistic_counts_BC_in_RNA_DNA_merge
	TODO

	statistic_counts_barcode_base_composition
	TODO

	statistic_counts_final
	TODO

	statistic_counts_frequent_umis
	TODO

	statistic_counts_stats_merge
	TODO

	statistic_counts_table
	TODO

Todo

Rules not correct in example experiment workflow

Results

All needed output files will be in the :code:`results/assignment/countBasic`folder.

To generate a final report, the following code can be used

snakemake --config config.yml --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --report report.html

This html contains als information about the snakemake run and integrates statistic tables and plots.

Total file tree of the results folder:

Combined workflow

This example runs the assignment and the experiment/count workflow on 5’/5’ WT MRPA data in the HepG2 cell line from Klein J., Agarwal, V., Keith, A., et al. 2019 [https://www.biorxiv.org/content/10.1101/576405v1.full.pdf].

Prerequirements

This example depends on the following data and software:

Installation of MPRAsnakeflow

Please install conda, the MPRAsnakeflow environment and clone the actual MPRAsnakeflow master branch. You will find more help under Installation.

Meta Data

It is necessary to get the ordered oligo array so that each enhancer sequence can be labeled in the analysis and to trim any adaptors still in the sequence, in this case we trim off 15bp from the end of each sequence

mkdir -p combined_basic/data
cd combined_basic/data
wget ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM4237nnn/GSM4237954/suppl/GSM4237954_9MPRA_elements.fa.gz

zcat GSM4237954_9MPRA_elements.fa.gz |awk '{ count+=1; if (count == 1) { print } else { print substr($1,1,171)}; if (count == 2) { count=0 } }' > design.fa

Reads

There is one set of association sequencing for this data, which contains a forward (CRS-forward), reverse (CRS-reverse), and index (barcode) read for DNA and RNA. These data must be downloaded. All data is publically available on the short read archive (SRA). We will use SRA-toolkit to obtain the data.

Note

You need 10 GB disk space to download the data!

conda install sra-tools
cd combined_basic/data
fastq-dump --gzip --split-files SRR10800986
cd ..

For large files and unstable internet connection we reccommend the comand prefetch from SRA tools before running fastq-dump. This command is much smarter in warnings when something went wrong.

conda install sra-tools
cd combined_basic/data
prefetch SRR10800986
fastq-dump --gzip --split-files SRR10800986
cd ..

Note

Please be sure that all files are downloaded completely without errors! Depending on your internet connection this can take a while. If you just want some data to run MPRsnakeAflow you can just limit yourself to one condition and/or just one replicate.

With

tree data

the folder should look like this:

data
├── design.fa
├── SRR10800881_1.fastq.gz
├── SRR10800881_2.fastq.gz
├── SRR10800881_3.fastq.gz
├── SRR10800882_1.fastq.gz
├── SRR10800882_2.fastq.gz
├── SRR10800882_3.fastq.gz
├── SRR10800883_1.fastq.gz
├── SRR10800883_2.fastq.gz
├── SRR10800883_3.fastq.gz
├── SRR10800884_1.fastq.gz
├── SRR10800884_2.fastq.gz
├── SRR10800884_3.fastq.gz
├── SRR10800885_1.fastq.gz
├── SRR10800885_2.fastq.gz
├── SRR10800885_3.fastq.gz
├── SRR10800886_1.fastq.gz
├── SRR10800886_2.fastq.gz
├── SRR10800886_3.fastq.gz
├── SRR10800986_1.fastq.gz
├── SRR10800986_2.fastq.gz
└── SRR10800986_3.fastq.gz

MPRAsnakeflow

Now we are ready to run MPRAsnakeflow and create CRS-barcode mappings and counts.

Run snakemake

Now we have everything at hand to run the count MPRAsnakeflow pipeline. We will run the pipeline directly in the combined_basic folder. The MPRAsnakeflow workflow can be in a different directory. Let’s assume /home/user/MPRAsnakeflow.

First we have to configure the config file:

global:
 threads: 10
 assignments:
 split_number: 30
assignments:
 assocBasic:
 bc_length: 15
 sequence_length:
 min: 166
 max: 175
 alignment_start:
 min: 1
 max: 3
 FW:
 - data/SRR10800986_1.fastq.gz
 BC:
 - data/SRR10800986_2.fastq.gz
 REV:
 - data/SRR10800986_3.fastq.gz
 reference: data/design.fa
 configs:
 exampleConfig:
 min_support: 3
 fraction: 0.7
 unknown_other: false
 ambiguous: false
experiments:
 countBasic:
 bc_length: 15
 umi_length: 10
 data_folder: data
 experiment_file: data/experiment.csv
 demultiplex: false
 assignments:
 fromWorkflow:
 type: config
 assignment_name: assocBasic
 assignment_config: exampleConfig
 design_file: data/design.fa
 configs:
 exampleConfig:
 filter:
 bc_threshold: 10
 DNA:
 min_counts: 1
 RNA:
 min_counts: 1

First we do a try run using snakemake -n option. The MPRAsnakeflow command is:

cd combined_basic
conda activate mprasnakeflow
snakemake -c 1 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile /home/user/MPRAsnakeflow/resources/combined_basic/config.yml -n

You should see a list of rules that will be executed. This is the summary:

Job stats:
job count min threads max threads
-- ------- ------------- -------------
all 1 1 1
assigned_counts_assignBarcodes 6 1 1
assigned_counts_dna_rna_merge 3 1 1
assigned_counts_filterAssignment 1 1 1
assigned_counts_make_master_tables 1 1 1
assignment_bwa_ref 1 1 1
assignment_fastq_split 3 1 1
assignment_filter 1 1 1
assignment_flagstat 1 1 1
assignment_getBCs 1 1 1
assignment_idx_bam 1 1 1
assignment_mapping 1 10 10
assignment_merge 30 1 1
assignment_statistic_assignedCounts 1 1 1
assignment_statistic_assignment 1 1 1
assignment_statistic_totalCounts 1 1 1
counts_create_BAM_umi 6 1 1
counts_dna_rna_merge_counts 6 1 1
counts_filter_counts 6 1 1
counts_final_counts_umi 6 1 1
counts_raw_counts_umi 6 1 1
statistic_assigned_counts_combine_BC_assignment_stats 1 1 1
statistic_assigned_counts_combine_BC_assignment_stats_helper 1 1 1
statistic_assigned_counts_combine_stats_dna_rna_merge 1 1 1
statistic_assigned_counts_combine_stats_dna_rna_merge_all 1 1 1
statistic_bc_overlap_combine_assigned_counts 1 1 1
statistic_bc_overlap_combine_counts 1 1 1
statistic_bc_overlap_run 4 1 1
statistic_correlation_bc_counts 2 1 1
statistic_correlation_calculate 1 1 1
statistic_correlation_combine_bc_assigned 1 1 1
statistic_correlation_combine_bc_raw 1 1 1
statistic_correlation_combine_oligo 1 1 1
statistic_counts_BC_in_RNA_DNA 6 1 1
statistic_counts_BC_in_RNA_DNA_merge 2 1 1
statistic_counts_barcode_base_composition 6 1 1
statistic_counts_final 2 1 1
statistic_counts_frequent_umis 6 1 1
statistic_counts_stats_merge 2 1 1
statistic_counts_table 12 1 1
total 136 1 10

When dry-drun does not give any errors we will run the workflow. We use a machine with 30 threads/cores to run the workflow. Therefore split_number is set to 30 to parallize the workflow. Also we are using 10 threads for mapping (bwa mem). But snakemake takes care that no more than 30 threads are used.

snakemake -c 30 --use-conda --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --configfile /home/user/MPRAsnakeflow/resources/combined_basic/config.yml

Note

Please modify your code when running in a cluster environment. We have an example SLURM config file here config/sbatch.yml.

If everything works fine the 40 rules showed above will run. Please goto the :ref:`Assignment example`_ and the :ref:`Count example`_

Results

All needed output files will be in the results/assignment/assocBasic folder for assignment results. The folder results/experiments/countBasic contains the count results.

To generate a final report, the following code can be used

snakemake --config config.yml --snakefile /home/user/MPRAsnakeflow/workflow/Snakefile --report report.html

This html contains als information about the snakemake run and integrates statistic tables and plots.

Total file tree of the results folder:

Frequently Asked Questions

If you have more question please write us a ticket on github [https://github.com/kircherlab/MPRAsnakeflow/issues].

	MPRAsnakeflow is not able to create a Conda environment
	If you get a message like:

Caused by: json.decoder.JSONDecodeError: Extra data: line 1 column 2785 (char 2784)#

Try to do the following steps

rm -r .snakemake/metadata .snakemake/incomplete

Afterwards try MPRAsnakeflow again. If the above error still occurs, rerun after deleting the entire .snakemake folder.

	Can I use STARR-seq with MPRAsnakeflow?
	No, not yet!

	The pipeline is giving an error “BUG: Out of jobs ready to be started, but not all files built yet.” and won’t run. How can I fix this?
	Please update snakemake, as this error is highly likely to have occured from snakemake internal issues.

Contributing

Contributions are welcome, and they are greatly appreciated!
Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/kircherlab/MPRAsnakeflow/issues

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the Github issues for bugs.
If you want to start working on a bug then please write short message on the issue tracker to prevent duplicate work.

Implement Features

Look through the Github issues for features.
If you want to start working on an issue then please write short message on the issue tracker to prevent duplicate work.

Write Documentation

MPRAsnakeflow could always use more documentation, even on the web in blog posts, articles, and such.

MPRAsnakeflow uses Sphinx [https://www.sphinx-doc.org] for the user documentation (that you are currently reading).
See doc_guidelines on how the documentation reStructuredText is used.
See doc_setup on creating a local setup for building the documentation.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/kircherlab/MPRAsnakeflow/issues

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Documentation Guidelines

For the documentation, please adhere to the following guidelines:

	Put each sentence on its own line, this makes tracking changes through Git SCM easier.

	Provide hyperlink targets, at least for the first two section levels.

	Use the section structure from below.

.. heading_1:

=========
Heading 1
=========

.. heading_2:

Heading 2

.. heading_3:

Heading 3
=========

.. heading_4:

Heading 4

.. heading_5:

Heading 5
~~~~~~~~~


.. heading_6:

Heading 6
:::::::::







Documentation Setup

For building the documentation, you have to install the Python program Sphinx.
This is best done in a virtual environment.
We created a conda environment to work with the actual documentation.

Use the following steps for installing Sphinx and the dependencies for building the MPRAsnakeflow documentation:

cd MPRAsnakeflow/docs
conda env create -f environment.yml -n sphinx
conda activate sphinx





Use the following for building the documentation.
The first two lines is only required for loading the virtualenv.
Afterwards, you can always use make html for building.

cd MPRAsnakeflow/docs
conda activate sphinx
make html  # rebuild for changed files only
make clean && make html  # force rebuild







Get Started!

Ready to contribute?
First, create your Documentation development setup.


	Fork the MPRAsnakeflow repo on GitHub (master branch).


	Clone your fork locally:

git clone git@github.com:your_name_here/MPRAsnakeflow.git







	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.






	When you’re done making your changes, make sure that snakemake runs properly
For snakemake:

snakemake --use-conda -p -n





For documentation:

cd docs
make clean && make html







	Commit your changes and push your branch to GitHub:

git add <your_new_file> # or git stage <your_edited_file>
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.






Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated.








            

          

      

      

    

  

    
      
          
            
  
Authors

in alphabetical order


	Max Schubach





Contributors


	You name here








            

          

      

      

    

  

    
      
          
            
  
History










            

          

      

      

    

  

    
      
          
            
  
MPRAsnakeflow License

MPRAsnakeflow is licensed under the Apache 2.0 License:

MIT License

Copyright (c) 2021, Max Schubach, Berlin Institute of Health (BIH)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.








            

          

      

      

    

  

    
      
          
            
  
Documentation TODO-list


Todo

Rules not correct in example experiment workflow



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mprasnakeflow/checkouts/development/docs/count_example1.rst, line 269.)


Todo

This is not the correct file tree for the experiment workflow



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mprasnakeflow/checkouts/development/docs/experiment.rst, line 184.)


Todo

These are not the correct files for each condition in the experiment workflow



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mprasnakeflow/checkouts/development/docs/experiment.rst, line 207.)


Todo

These are not the correct files for the experiment workflow



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mprasnakeflow/checkouts/development/docs/experiment.rst, line 230.)




            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  _images/Count_util.png
Count
-count BCs
-normalize





_images/MPRAsnakeflow_assignment.png
Input

Conflg
(yamifson)

Assignment workflow

Spitt by length
rule: assignment_hybridFWRead_get_reads_by_length

Spitt reads using fastasplitter (performance)

REV
(fastg)

BC
(tastg)

Design
(mult-fasta)

Spiit by using cutadapt to trim linker

Performance rule

ule: assignmemt_hybridFWRead_get_reads_by_cutadapt

rule: assignment fastq_spilt

for each spit

Add BC to header of FW and Rev reads Merge FW and REV reads

Tule: assignment_attach_idx rule: assignment_merge

Create BWA reference Map reads o design using BWA
fule: assignment_bwa_ref rule: assignment_mapping

Get BCS with mappings

ule: assignment_getBCs

Collect all BGs in a sorted file
fule: assignment_collectBCs

Fiter BCs

config: min_suppor, raction
rule: assignment fiter

config: alignment_startfminimax], sequence_length{min/max], min_mapping_qualty

Concatenation

Collect mapped reads.
rule: assignment _collect

Index mapping
ule: assignment_idx_bam

‘Samtools flagstat
rule: assignment_flagstat

Mapping Mapping index

aligned_merged_reads.bam

aligned_merged.reads.bam.bal

All observed barcodes
barcodes_incl_other.sorted.tsv.gz

Mapping flag statistic
bam _stats.bdt.

Mapping of barcodes (fitered)
assignment_barcodes {assignment_config) sorted.tsv.gz






nav.xhtml

    
      Table of Contents


      
        		
          MPRAsnakeflow’s documentation
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





